
HESSD
2, 971–1009, 2005

A fast TDR-inversion
technique

S. Schlaeger

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

Hydrol. Earth Sys. Sci. Discuss., 2, 971–1009, 2005
www.copernicus.org/EGU/hess/hessd/2/971/
SRef-ID: 1812-2116/hessd/2005-2-971
European Geosciences Union

Hydrology and
Earth System

Sciences
Discussions

Papers published in Hydrology and Earth System Sciences Discussions are under
open-access review for the journal Hydrology and Earth System Sciences

A fast TDR-inversion technique for the
reconstruction of spatial soil moisture
content
S. Schlaeger1,2

1Soil Moisture Group (SMG), University of Karlsruhe, Germany
2SCHLAEGER – mathematical solutions, Karlsruhe, Germany

Received: 2 May 2005 – Accepted: 17 May 2005 – Published: 13 June 2005

Correspondence to: S. Schlaeger (info@stefan-schlaeger.de)

© 2005 Author(s). This work is licensed under a Creative Commons License.

971

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/971/hessd-2-971_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/971/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 971–1009, 2005

A fast TDR-inversion
technique

S. Schlaeger

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

Abstract

Spatial moisture distribution in natural soil or other material is a valuably information
for many applications. Standard measurement techniques give only mean or pointwise
results. Therefore a new inversion algorithm has been developed to derive moisture
profiles along single TDR sensor-probes. The algorithm uses the full information con-5

tent of TDR reflection data measured from one or both sides of an embedded probe.
The system consisting of sensor probe and surrounded soil can be interpreted as a
nonuniform transmission-line. The algorithm is based on the telegraph equations for
nonuniform transmission-lines and an optimization approach to reconstruct the distri-
bution of the capacitance and effective conductance along the transmission-line with10

high spatial resolution. The capacitance distribution can be converted into permittiv-
ity and water content by means of a capacitance model and dielectric mixing rules.
Numerical investigations have been carried out to verify the accuracy of the inversion
algorithm. Single- and double-sided time-domain reflection data were used to deter-
mine the capacitance and effective conductance profiles of lossless and lossy soils.15

The results show that single-sided reflection data are sufficient for lossless (or low-
loss) cases. In case of lossy material two independent reflection measurements are
required to reconstruct a reliable soil moisture profile. The inclusion of an additional
effective conductivity profile leads to an improved capacitance profile. The algorithm
converges very fast and yields a capacitance profile within a sufficiently short time. The20

additional transformation to the water content requires no significant calculation time.

1. Introduction

The water content of soils and other porous materials is one of the most important
parameters in hydrology, agriculture and civil engineering. Standard methods such as
oven-drying are very time-consuming and destructive, neutron moderation or gamma25

attenuation measurements make use of critical radioactive sources. The determination
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of moisture content with time-domain reflectometry (TDR) technology is based on mea-
surements of travel-time of an electromagnetic pulse on a transmission-line of known
length. For homogeneous materials the travel-time is directly related to the permittivity,
which is in common porous materials mainly a function of water content (Topp et al.,
1980).5

One type of TDR transmission-line commonly used in many soil moisture relevant
applications is an unshielded metallic fork, which is inserted into the material under
test. The maximum length is limited, because the electromagnetic pulse is attenuated
and disappears on longer lines. For longer transmission-line sensors insulated probes
are more capable.10

So far TDR technology was limited to an integral or very coarsely resolved water
content determination along the sensor line. But many applications ask for the spa-
tial moisture distribution in soils or building constructions along a given profile. A high
spatial resolution can be achieved by exploiting the full information content in the re-
flected electromagnetic signals of the sensor line (Lundstedt and He, 1996; Norgren15

and He, 1996). A new reconstruction algorithm has been developed which uses the
full information of the TDR signals measured on one or both sides of the line. It is
based on the telegraph equation for nonuniform transmission-lines and an optimization
approach to reconstruct simultaneously one or two line parameters with high spatial
resolution (Schlaeger, 2002). In comparison with other full wave inversion techniques20

(e.g. generic algorithms, Oswald, 2000) it needs clearly less computation expenditure.
The optimization algorithm uses the conjugate-gradient-technique and fast simplex or
complex methods.

Using laboratory tests it is shown that TDR reflection data from both sides of a buried
flat-ribbon-cable sensor are suitable for simultaneous reconstruction of capacitance25

and effective conductance profiles. During an investigation of the transport of volatile
organic compounds in medium grained sand (grain size 0.2 to 1 mm) the moisture
profile under irrigation has been measured. In the steady state the volumetric wa-
ter content varies along the vertically arranged transmission-line sensor of 71.7 cm
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between 0.5 and 44%. The changes in water content could be reconstructed with a
high spatial accuracy and an average uncertainty of ±2.3% compared to oven-drying
measurements1.

To determine moisture profiles, appropriate TDR-devices (short pulse rise time, high
sampling rate) and sensitive testing probes (well known electric parameters) are re-5

quired. The mathematical model has to be chosen to describe the physical process
during the measurement in a very accurate and computable way. The inversion al-
gorithm starts with an initial guess of the electric parameter distribution. Using this
parameter distribution an associated TDR-signal can be calculated. The difference be-
tween the measurement and this simulation leads to a rough deformation-instruction for10

the given parameter distribution. During one optimization-step a new parameter distri-
bution will be generated by deforming the old distribution according to the deformation-
instruction. In the next step the comparison between measurement and simulation
leads to an improved deformation-instruction. The optimization will be continued until
a minimum difference is reached. The resulting electric parameter distribution can be15

easily transformed into water content profiles. The whole process is called Spatial-
TDR.

The Soil Moisture Group (SMG) at the University of Karlsruhe has tested this Spatial-
TDR technology in many applications. A monitoring system to measure the spatial soil
water distribution on a full-scale levee model has been successfully implemented with20

transmission-lines up to 3 m and leads to significant specifications for drainage models
(Scheuermann et al., 2001). The technology is also being used for flood warning sys-
tems, and snow moisture measurements (Becker et al., 2002; Stacheder et al., 2005),
and for the determination of the water content of technical barriers in waste disposal
sites (Becker et al., 2003).25

1Schlaeger, S., Hübner, C., and Weber, K.: Moisture profile determination with TDR, in
preparation, 2005.
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2. Basic equations

The propagation of electromagnetic waves on insulated and non insulated
transmission-lines can be described by the telegraph equations. These equations were
developed by Heaviside in 1886. In this model the transmission-line is characterized by
four electrical parameters: the inductance L, capacitance C, series resistance R, and5

shunt conductance G. The equivalent electric circuit of an infinitesimal transmission-
line section is given in Fig. 1. It is seen that the inductance and resistance are series
elements that cause a voltage drop along the line, whereas the capacitance and con-
ductance are shunt elements that provide a current path between the conductors.

From a circuit theory approach it is a simple matter to derive the telegraph equations10

that describe the variation of the voltage U(x, t) and the current I(x, t) in the time along
the transmission-line due to the influence of the electric parameters of the line and the
surrounding media. By applying Kirchhoff’s voltage and current laws to the equivalent
circuit in Fig. 1, one obtains

∂
∂x

U(x, t) = −R(x)I(x, t) − L(x)
∂
∂t

I(x, t) , (1)15

∂
∂x

I(x, t) = −G(x)U(x, t) − C(x)
∂
∂t

U(x, t) . (2)

Usually R and L are constant for the probe whereas C and G depend on the surround-
ing material. In most cases R can be neglected. The conductance G of transmission-
line sensors embedded in soil depends on soil type, water content, and frequency.
Usually clayey and loamy soils have much higher conductivity than sands. The capac-20

itance C is intimately connected with the permittivity and therefore the water content
of the surrounding medium. The determination of the spatial distribution of C(x) is the
key component of the presented reconstruction of the soil water content.

The solution of Eqs. (1) and (2) describes the propagation in time and space of a
supplied pulse to the whole measurement system. When the solution is restricted to25
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one spatial point it represents a simulated measurement in this point. To calculate
the solution initial and boundary conditions for the partial differential equations (PDE)
are needed. It is also important to consider the connection between TDR-device and
testing probe. Usually they are connected with a lossless and uniform coaxial-cable
(R=0, G=0, C=const, and L=const). Assume that there is no energy on the line at the5

beginning of the measurement. So the initial conditions can be set to

U(x, t)t≤0 = 0, I(x, t)t≤0 = 0, for all x . (3)

Than the Eqs. (1) and (2) can be transformed to one single PDE of second order[
LC

∂2

∂t2
+ LG

∂
∂t

+
∂L
/
∂x

L
∂
∂x

− ∂2

∂x2

]
U(x, t) = 0 . (4)

The derivative of L has to be considered in Eq. (4) because the inductance of the10

coaxial-cable and the testing probe are constant but may be different in general. The
initial conditions (Eq. 3) can be transformed to

U(x, t)|t≤0 = 0,
∂
∂t

U(x, t)|t≤0 = 0, for all x . (5)

To define the boundary conditions for the PDE (Eq. 4) the whole measurement con-
figuration has to be considered. The sensitive transmission-line has to be inserted into15

the soil and must be connected to a TDR-device in order to excite an electric pulse.
Figure 2 describes the experimental setup to receive the reflection data from one

side of the sensitive transmission-line. Therefore reflection measurements must be
realized with an external current Fex=δ(x−xa) · f (t) at x=xa. The back-traveling wave
is absorbed by the matched impedance Zi inside the TDR-device if it is equal to the20

impedance Z of the coaxial-cable. This absorbing boundary condition for the lossless
wave equation can be numerically implemented in the coaxial-cable using (Engquist
and Majda, 1977):[

∂
∂x

−
√
LaCa

∂
∂t

]
U(xa, t) = La

∂
∂t

Fex(xa, t), t ≥ 0 . (6)
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The boundary conditions at the end of the sensitive line at x=x2 depends on its physical
implementation. In case of an open-circuit the boundary condition will be

∂
∂t

U(x2, t) = 0, t ≥ 0 . (7)

If there is a short-circuit at x=x2 the boundary condition will be U(x2, t)=0, for t≥0.
In order to reconstruct two parameters, two independent measurements are needed.5

Consequently, the problem is divided into two parts, the first dealing with an incident
wave from the left and the second with an incident wave from the right side of the
system under test.

Figure 3 describes the experimental setup to receive the reflection data from both
sides of the unknown material. Therefore two separate measurements must be realized10

with the external current F 1
ex=δ(x−xa)·f (t) and F 2

ex=δ(x−xe)·f (t), respectively. U1(x, t)
and U2(x, t) are the solutions of both separate forward problems. The setup of Fig. 3
can be transformed to the setup in Fig. 2 for each single-sided measurement using
sensor switches (Becker and Hübner, 2003). In this case the solution of U1(x, t) can
be calculated according to U(x, t) by using Eqs. (4)–(7). If there is a coaxial-cable15

permanently attached at x=xe an absorbing boundary condition has to be used instead
of Eq. (7):[

∂
∂x

+
√
LeCe

∂
∂t

]
U1(xe, t) = 0, t ≥ 0 . (8)

For the other initial-boundary-value-problem (IBVP) for U2 with external current F 2
ex the

boundary conditions are exchanged.20

The inverse method presented in the next section is based on an iterative search for
the electrical parameters of the nonuniform transmission-line with the full wave solution
of the direct problem. The solution of the line needs to be calculated repetitively. It is
therefore important to use a technique for the determination of this solution that is
computationally efficient to guarantee low calculating time.25
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3. Optimization approach

The aim of the investigation is the determination of the unknown distribution of C(x)
with measurements of input and output data. The input data f (t), which describes the
incident pulse, can be easily determined from the reflection measurements Ua(xa, t) of
the coaxial-cable between xa and x1 with an open-circuit at x=x1. The output data λ(t)5

is the reflected signal based on the associated input signal at one side of the sensor
line.

The cost function J(C) defines the squared difference (in L2-norm) between the so-
lution of the direct problem (Eqs. 4–7) restricted to x=x1 corresponding to one given
parameter distribution C and the measured reflections λ(t) at x=x1,10

J(C) = ‖U(x1, t;C) − λ(t)‖2
2 =

2T∫
0

[U(x1, t;C) − λ(t)]2 dt (9)

with T=τ(x1, x2), where τ(x1, x2) is the travel-time between x1 and x2. The cost func-
tion refers to the error in the solution for single-sided incidence measurements. The
concept of the method is to find the parameter distribution that minimize the cost func-
tional J . If the problem has a solution the theoretical minimum of J is zero. One impor-15

tant reason for choosing the L2-norm is the possibility to derive exact expressions for
the gradient of J .

3.1. Exact expression of the gradient of the cost function

In the following section the gradient of the cost function will be determined for single-
sided and double-sided reflection data, respectively. For one single measurement it is20

only possible to calculate one parameter distribution C(x) or G(x) while the other one
is known (He et al., 1993). Assuming that the capacitance and conductance are con-
nected by a transfer function then it is possible to calculate both parameter distributions
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from one single reflection measurement using an empirical G(C)-relationship (Hakans-
son, 1997). This relationship depends not only on the water content but also on the
electrolyte imbalance of the pore water. The determination of this relation may be very
time intensive. If both parameter distributions are to be calculated simultaneously with-
out this G(C)-relationship, two independent measurements have to be carried out, e.g.5

double-sided reflection measurements (He et al., 1994). In the first case the gradient
for J(α)=J(C) or J(α)=J(G), in the second case the gradient for J(α)=J(C,G) is cal-
culated. In both cases the gradient ∇J(α) can be calculated using the standard finite
difference formulation for δα→0:

J(α + δα) − J(α) = 〈δα,∇J(α)〉 =
∞∫

−∞

δα(x) · ∇J(α)(x)dx . (10)
10

3.1.1. Single-sided reflection data

In the case of only one single-sided reflection data-set it is reasonable to reconstruct
the capacitance profile C(x) to determine the water content. Therefore the information
about the gradient ∇J(C) has to be generated. According to Eq. (9), Eq. (10) can be
transferred to15

J(C + δC) − J(C) (11)

=

2T∫
0

[U (x1, t;C + δC) − λ(t)]2 − [U (x1, t;C) − λ(t)]2dt

=
2T∫
0
U2 (x1, t;C + δC) − U2 (x1, t;C)

−2λ(t) [U (x1, t;C + δC) − U (x1, t;C)] dt
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=
2T∫
0

[U (x1, t;C + δC) + U (x1, t;C)]︸ ︷︷ ︸
≈2U(x1,t;C)

· [U (x1, t;C + δC) − U (x1, t;C)]︸ ︷︷ ︸
=:δU(x1,t;C)

−2λ(t) · [U (x1, t;C + δC) − U (x1, t;C)]︸ ︷︷ ︸
=:δU(x1,t;C)

dt

≈
2T∫
0

2δU (x1, t;C) · [U (x1, t;C) − λ(t)] dt

=

2T∫
0

∞∫
−∞

δU (x, t;C) · 2δ (x − x1) [U (x, t;C) − λ(t)] dx dt

In Eq. (11) δ(x) represents the Dirac delta-function with ∫δ(x − x0)f (x)=f (x0) for all f .
The difference between two solutions according to a difference between C and C+δC is5

defined by δU(C)=U(C+δC)−U(C). For small discrepancies in C the difference δU(C)
is assumed to be also small and U(C+δC)+U(C)≈2U(C). To make further transforma-
tions of Eq. (11) the advantages of adjoint operators will be used. Therefore a linear
operator L is defined analog to Eq. (4):

LU ≡
[
LC

∂2

∂t2
+ LG

∂
∂t

+
∂L
/
∂x

L
∂
∂x

− ∂2

∂x2

]
U (12)

10

The definition of the adjoint operator L
∗ is that he will fulfil the following equation for

every U(x, t) and V (x, t)(
LU |V

)
=
(
U |L∗V

)
(13)

980

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/971/hessd-2-971_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/971/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 971–1009, 2005

A fast TDR-inversion
technique

S. Schlaeger

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

using the inner product

(
U |V
)
=

2T∫
0

∞∫
−∞

U(x, t)V (x, t)dx dt. (14)

Now the PDE for the adjoint operator L∗ has to be determined. The left side of Eq. (13)
can be transformed using Eqs. (12) and (14). Each of the double-integrals will be
transformed to isolate U(x, t) using integration by parts in every addend. The auxiliary5

terms resulting from this isolation must be eliminated now, as the initial and boundary
conditions for V are appropriate selected. The notation Ut and Utt in the following
equation is an abbreviation for the partial differential derivative ∂U/∂t and ∂2U/∂t2,
respectively.
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(
LU |V

)
=

2T∫
0

∞∫
−∞

LCUttV dxdt +
2T∫
0

∞∫
−∞

LGUtV dxdt

+
2T∫
0

∞∫
−∞

Lx
L UxV dxdt −

2T∫
0

∞∫
−∞

UxxV dxdt

=
∞∫
−∞

LC

(
[UtV ]t=2T

t=0 − [UVt]
t=2T
t=0 +

2T∫
0
UVttdt

)
dx

+
∞∫
−∞

LG

(
[UV ]t=2T

t=0 −
2T∫
0
UVtdt

)
dx

+
2T∫
0

(
[U Lx

L V ]x=∞x=−∞ −
∞∫
−∞

U
(
Lx
L

)
x
V dx −

∞∫
−∞

U Lx
L Vxdx

)
dt

−
2T∫
0

(
[UxV ]x=∞x=−∞ − [UVx]x=∞x=−∞ +

∞∫
−∞

UVxxdx
)
dt

#1
=

2T∫
0

∞∫
−∞

LCVttUdxdt −
2T∫
0

∞∫
−∞

LGVtUdxdt

−
2T∫
0

∞∫
−∞

Lx
L VxUdxdt −

2T∫
0

∞∫
−∞

VxxUdxdt

#2
=
(
U |L∗V

)

(15)

To make sure that transformation #1 in Eq. (15) is correct the initial and boundary
conditions for V (x, t) have to be set as follows

V (x,2T ) = 0,
∂
∂t

V (x,2T ) = 0,−∞ < x < ∞, (16)

V (−∞, t) = 0,
∂
∂t

V (∞, t) = 0, 0 ≤ t ≤ 2T. (17)5
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The initial condition results to a backward propagation in time from 2T to zero. When
the operator L∗ is defined by

L
∗V ≡

[
LC

∂2

∂t2
− LG

∂
∂t

−
∂L
/
∂x

L
∂
∂x

− ∂2

∂x2

]
V (18)

then equivalence #2 in Eq. (15) will also be fulfilled. Now the adjoint operator L∗ that
accomplishes (Eq. 13) is found with its corresponding PDE (Eq. 18) and initial and5

boundary conditions (Eqs. 16–17). The solution V of this PDE can only be different
from zero if a non vanishing right side is assigned to L

∗V . Looking back to equation
(11) one can equate

L
∗V = 2δ (x − x1) [U (x, t;C) − λ(t)] (19)

to continue the transformations of Eq. (11) and use the property of L∗ being the adjoint10

operator to L according to the inner product (Eq. 14).

J (C + δC) − J (C)

=
2T∫
0

∞∫
−∞

δU ·
(
L
∗V
)
dx dt

=
2T∫
0

∞∫
−∞

(LδU) · V dx dt

=
2T∫
0

∞∫
−∞

V
[
LδCUtt + LCδUtt + LGδUt +

Lx
L δUx − δUxx

]
dx dt

=
∞∫
−∞

δC
2T∫
0
V LUttdt dx

+

2T∫
0

∞∫
−∞

V
[
LCδUtt + LGδUt +

Lx

L
δUx − δUxx

]
dxdt

︸ ︷︷ ︸
→0 f or ‖δC‖→0

(20)
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From Eqs. (20) and (10) it follows that

∇J(C) =

2T∫
0

LV
∂2

∂t2
Udt = −

2T∫
0

L
∂
∂t

V
∂
∂t

Udt. (21)

This gradient can be calculated by solving two IBVP: One forward problem for the direct
wave (Eqs. 4–7) and one backward problem for the adjoint wave (Eqs. 16–19).

3.1.2. Double-sided reflection data5

For the simultaneous reconstruction of C(x) and G(x) it is necessary to take two inde-
pendent measurements. As shown in the previous section one choice will be the two
reflection measurements from both sides of the sensor:

λ1(t) = Ua(x1, t), λ2(t) = Ue(x2, t) (22)

It is also necessary to choose another cost function in order to minimize the error10

between the simulation and the measurements simultaneously. Choosing Jα=J(C,G)
as

J(α) =
2∑

i=1

2T∫
0

[Ui (xi , t;α) − λi (t)]
2 dt. (23)

The determination of the two gradients is very similar to the transformations above.
It leads to the same adjoint PDE for L

∗ as in Eq. (18). But two different backward15

problems have to be calculated according to the two different forward solutions U1 and
U2. The right sides of the adjoint problems are given by

L
∗Vi = 2δ (x − xi ) [Ui (x, t;α) − λi (t)] , i = 1, 2 (24)

and the initial and boundary conditions have to be chosen to fulfil

Vi (x,2T ) = 0,
∂
∂t

Vi (x,2T ) = 0, −∞ < x < ∞, i = 1, 2, (25)20
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Vi (−∞, t) = 0,
∂
∂t

Vi (∞, t) = 0, 0 ≤ t ≤ 2T, i = 1, 2. (26)

For each given α=(C(x), G(x)) one can solve the forward problems for U1(x, t) and
U2(x, t) and the backward problems for V1(x, t) and V2(x, t) and calculate the gradients
of J(α) with respect to C and G, respectively:

∇CJ(α) = −
2∑

i=1

2T∫
0

L
∂
∂t

Vi
∂
∂t

Uidt (27)
5

∇GJ(α) =
2∑

i=1

2T∫
0

LVi
∂
∂t

Uidt . (28)

3.2. Reconstruction of the parameter distribution

To determine the distribution of α=C(x) a conjugate gradient (cg) method is appropriate
if the gradient of the function to be minimized can be calculated explicitly and very
easily. Starting with a parameter distribution α(0) the first search direction is given by10

the direction of steepest decent P (0)=−∇J(α(0)). The next parameter distribution can
be calculated by

α(k+1) = α(k) + γ(k)P (k) (29)

where γ(k) is the optimal step-size to minimize the cost function based on the former
parameter distribution α(k) and the search-direction P (k):15

γ(k) = min
γ

J
(
α(k) + γ · P (k)

)
. (30)

The main effort of computation in this minimization is due to the large number of cost
function analysis. Therefore an effective numerical algorithm concerning minimum
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function calls is the core of a fast reconstruction algorithm. In comparison to con-
ventional cg-methods the following search direction P (k+1) is not only the direction of
steepest decent at α(k+1) but also a combination of former search-directions.

P (k+1) = −∇J
(
α(k+1)

)
+

∥∥∥∇J (α(k+1)
)∥∥∥2

2∥∥∇J (α(k)
)∥∥2

2

· P (k) (31)

This leads to a faster convergence and less calculation effort. The cg-method was5

chosen according to Fletcher and Reeves (1964) – similar results were carried out by
using the cg-method according to Polak and Ribière (1969).

During simultaneous reconstruction of C(x) and G(x) the minimum search in Eq. (30)
will be extended to a two-dimensional search:(
γ(k), η(k)

)
= min

γ,η
J
(
C(k) + γ · P (k)

C , G(k) + η · P (k)
G

)
(32)

10

Especially in this two-dimensional search the choice of an algorithm with as few func-
tion calls as possible is of crucial importance. The simplex method developed by Nelder
and Mead (1965) and the complex method by Box (1965) lead to fast optimization al-
gorithms even in the simultaneous reconstruction of two parameter functions. At one-
and two-parameter optimization the conjugate gradient algorithm terminates if there is15

no significant change in the value of two consecutive cost functions. Figure 4 shows
the flow chart of the preferred cg-method.

When using two measurements which show only small differences in the reflected
signal than the corresponding calculated parameter distribution shows only small vari-
ations as well.20

4. Determination of the water content

The capacitance profile C(x) describes the electrical properties of the whole medium
around the conductors of the sensitive transmission-line. If the sensor is not in-
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sulated C(x) can be easily transformed into the relative permittivity of the medium
εm(x)=L0c

2
0C(x), where L0 specifies the inductance of the sensor and c0 the speed

of light in vacuum. If the sensor is insulated with some dielectric material the total ca-
pacitance C(x) represents the combination of insulation and soil. Therefore a sensor
specific transformation from C to the relative permittivity ε of the soil is necessary.5

The flat-ribbon-cable used for many applications of the SMG is shown in Fig. 5. It has
been developed and patented by the Institute of Meteorology and Climate Research at
the Forschungszentrum Karlsruhe (Brandelik et al., 1998). The cable consists of three
flat copper wires covered with polyethylene. The electrical field is concentrated around
the conductors and defines the sensitive area of 3 to 5 cm around the cable depending10

on the permittivity. The electric properties of the flat-ribbon-cable used in this work can
be measured and calculated (cf. Fig. 6 and Table 1).

According to the equivalent circuit of Fig. 6 the total capacitance C can be expressed
by three capacitances C1, C2, and εmC3 and can be transformed into a direct relation
between the relative permittivity εm of the surrounding soil and the total capacitance:15

C = C1 +
C2εmC3

C2 + εmC3
. (33)

The three unknown capacitances C1, C2, and C3 were derived from calibration mea-
surements of three different materials with well known dielectric properties, e.g. air, oil,
and water. The inductance was determined by measuring the wave impedance with a
variable resistor at the end of the cable adjusted for minimum reflection. The values for20

the cable of Fig. 5 are given below (Hübner, 1999).
The permittivity of the soil can now be transformed to the volumetric water content

by standard transformations for arbitrary soils (e.g. Topp et al., 1980) or soil specific
calibration functions determined from laboratory test series. The accuracy of the water
content distribution depends highly on the accuracy of this transformation. The devi-25

ation due to insufficient knowledge of the material can easily exceed the errors of the
reconstruction of the capacitance profile C(x).
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The total conductance G(x) describes the conductivity of the material between the
copper wires, i.e. the system of polyethylene insulation and the surrounding material.
The determination of the water content distribution of the surrounding material does
not require the knowledge of the conductivity distribution of the material, but it cannot
be neglected during the reconstruction of C(x).5

5. Numerical results

In order to investigate the accuracy of the reconstruction with respect to a known profile,
artificial time-domain reflection data have been generated to provide input and output
data for single- and double-sided reconstructions of the capacitance profile. Therefore
a 2 m flat-ribbon-cable sensor was surrounded by several sections of different mate-10

rial with given electrical properties. Two different capacitance and conductance profile
combinations were used to represent one lossless and one lossy soil profile (see sec-
tions of constant electric properties given in Table 2). In contrast to the abrupt changes
of this synthetic example natural soil profiles show smooth transients in the water con-
tent (related to the chosen spatial discretization step).15

These parameter distributions lead to left- and right-sided reflection data for the loss-
less and lossy material (Hübner et al., 2005), see Fig. 7.

The initial capacitance C0=τ
2(x1, x2)/(L0(x2−x1)2) can be easily determined by sim-

ple travel-time measurements along the cable sensor (Heimovaara and Bouten, 1990).
To ensure the invariance of this sensor travel-time during the conjugate gradient al-20

gorithm one has find a constant shift Cγ for every given γ during the optimization to
fulfil√
C0(x2 − x1) =

x2∫
x1

√
C(x) + γPc + Cγdx (34)

This shift correction guarantees that all determined capacitance profiles lead to the
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same total travel-time along the cable sensor. It means that the mean moisture content
remains invariant during the optimization. Therefore the single roundtrip travel-time
τ(x1, x2) has to be determined as accurate as possible. Equation (29) has to be modi-
fied to get the advanced consecutive capacitance profile in the cg-algorithm:

C(k+1) = C(k) + γ(k)P (k)
c + Cγ(k) (35)5

with

γ(k) = min
γ

J
(
C(k) + γ · P (k)

c + Cγ

)
. (36)

5.1. One-parameter reconstruction

Compared to lossy materials the reconstruction of the true capacitance profile in loss-
less soil (G(x)=0) is rather simple. Only one unknown parameter distribution C(x) has10

to be determined. Therefore one single reflection measurement is sufficient to derive
the final capacitance profile.

To calculate the wave propagation the cable sensor is separated into 400 equally
spaced sections of 5 mm. For this discretization the single-sided reconstruction algo-
rithm needs about 15 min on a standard PC to calculate 20 iteration steps. The similar15

reconstruction using right-sided reflection data leads to comparable results.
Figure 8 shows several intermediate results during the conjugate gradient optimiza-

tion. The search direction leads to a good approximation of the capacitance profile
very fast. After the first iteration the main features are mapped very well. The following
iterations lead to smaller corrections of rather fine structures.20

In the case of lossy material with an unknown effective conductance profile G(x) a
first approach is to reconstruct C(x) using single-sided reflection data and assume G(x)
to be equal to zero over the whole area. Figure 9 show the results of this reconstruction.
The capacitance is overestimated due to the effect of the non vanishing conductivity.
Furthermore the optimization stops after three iteration steps, because the calculated25

search direction could not improve the value of the cost function (Eq. 9).
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This distortion is reduced if the mean value of the conductance will be used which
can also be determined from the time domain reflection. A mean value of G(x)=4 mS/m
was chosen to estimate the effect of the conductivity. Figure 10 shows the reconstruc-
tion of the capacitance using this assumption.

The results of the capacitance reconstruction presented in Figs. 9 and 10, do not5

satisfy the expectations on a reliable solution of the soil moisture determination. To get
better results it is necessary to use additional information to reconstruct the capaci-
tance C(x) and the conductance G(x) simultaneously.

5.2. Two-parameter reconstruction

To reconstruct C(x) and G(x) simultaneously, two independent measurements are10

needed. In the case of the lossy soil described in Table 2, reflection measurements
from both sides of the cable sensor are used. The minimization of Eq. (23) requires the
determination of the solution of two independent IBVP. In addition to this duplication of
the calculation effort the conjugate gradient method is more complex. To find the op-
timal step sizes for each search direction a two-dimensional search has to be treated.15

This causes a much larger calculation time for every iteration step. To keep the to-
tal calculation time acceptable, the terminating condition to exit the conjugate gradient
method has to be less strict.

Figure 11 shows the result of the optimization during several iteration steps. The al-
gorithm terminates after 8 iteration steps although the approximation to the true profile20

is not as good as for the single-sided reflection data. But in addition to the capacitance
profile the algorithm leads to a conductivity profile (see Fig. 12).

This conductivity profile represents the total conductance of the composite of insu-
lation and surrounding soil. A transformation from G(x) to the soil conductivity σ(x) is
not required because it gives no further information to the water content. But further25

investigations may close this gap.
Finally the iteration speed and the total calculation time of the presented numerical

examples were investigated. The results are presented in Fig. 13.
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One can see that the one-parameter reconstruction for lossless material leads to a
very good approximation of the given profile and that a quasi-steady state is reached
after 27 iterations. But the conductivity profile is exactly known in advance. In the case
of lossy material the best approximation to the true profile is given by the double-sided
reconstruction. The value of the cost function is half as much than for the single-sided5

reconstruction with constant conductivity (keep in mind the logarithmic scale of the
y-axis in the upper diagram of Fig. 13).

The calculation effort stays constant in every iteration step and is nearly equal for
the compared one-parameter reconstructions. It increases rapidly when using the two-
parameter reconstruction due to the two-dimensional step size optimization. But this10

calculation time is almost fast enough for many applications and surely contributes to
the further spreading of this method.

6. Conclusions

A fast inversion technique is presented that derives moisture profiles in high spatial
resolution from single TDR reflection measurements. The algorithm is based on an15

optimization approach to minimize the difference between the measurement and sim-
ulated TDR reflection data depending on a given parameter distribution. The opti-
mization is done with conjugate gradients due to the fact that the gradient can be
calculated explicitly. This gradient can be determined very fast by solving only two
initial-boundary-value-problems instead of several hundred when using standard Hes-20

sian matrix inversion techniques. The algorithm iterates very fast and leads to reliable
soil moisture profiles.

The results of this study of this new inversion technique for time domain reflectom-
etry data show that single-sided reflection data are capable for the reconstruction of
the soil moisture profile for lossless (or low-loss) soils. The full information content of25

one single travel-time roundtrip can be used to determine the capacitance profile C(x)
and the associated volumetric water content on a standard PC in reasonable time. In
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the case of lossy soils more information is required. The knowledge of the conduc-
tance profile G(x) or an experimental determined relationship between capacitance
and conductance for the used sensor and soil can improve the determination of mois-
ture profiles using only one single measurement. If none of this knowledge is available
one more independent reflection measurement is required.5

The presented inversion technique is also suitable for the simultaneous reconstruc-
tion of capacitance and conductance profile using double-sided reflection data. The
resulting profiles are more reliable than single-sided reconstructions with standard as-
sumptions to the conductivity (e.g. constant conductivity distributions). The simultane-
ous reconstruction of C(x) and G(x) and the associated volumetric water content can10

also be done within a reasonable time.
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Table 1. Cable parameters for the sensor cable in Fig. 5.

Circuit element C1 (pF/m) C2 (pF/m) C3 (pF/m) L0 (nH/m)

Measured value 3.4 323 14.8 756
Calculate value 4.0 308 13.7 785
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Table 2. Electrical properties of the test materials to represent lossless and lossy material.

Position (m)
0.0–0.3 0.3–1.3 1.3–1.7 1.7–2.0

Lossless C (pF/m) 20 40 80 20
G (mS/m) 0 0 0 0

Lossy C (pF/m) 20 40 80 20
G (mS/m) 0 4 8 0
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U+¶ /¶U x dxU

I

dx

Fig. 1. Equivalent circuit of an infinitesimal section of a transverse electromagnetic (TEM)
transmission-line.
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Fig. 2. Schematic representation of a sensitive transmission-line, situated between x1 and x2,
which is connected to a TDR-device on one side using a lossless uniform coaxial-cable with
impedance Z=(La/Ca)0.5.
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Fig. 3. The nonuniform transmission-line, situated between x1 and x2, is connected to two
lossless uniform coaxial-cables with matched impedances Zi at their endpoints.
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Fig. 4. Flow chart of the Fletcher-Reeves conjugate gradient method.
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Fig. 5. Insulated flat-ribbon-cable (short section with bare conductors to visualize the geometry
and the electrical connection of the cable) with a sensor switch between coaxial cable and
flat-ribbon-cable.
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Fig. 6. Capacitance model of the insulated flat-ribbon-cable from Fig. 5.
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Fig. 7. Left- and right-sided reflection data for the lossless (above) and lossy (below) soil profile,
both with main reflections at 22.3 ns as a result of an open-circuit at the end of the cable sensor.
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Fig. 8. Capacitance profiles C(x) during the reconstruction from left-sided reflection data (thin
line) for lossless material (G(x)≡0 mS/m) compared to the true profile (bold line).
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Fig. 9. Capacitance profiles C(x) during the reconstruction from left-sided reflection data (thin
line) for lossy material (wrong assumption of G(x)≡0 mS/m during reconstruction) compared to
the true profile (bold line).
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Fig. 10. Capacitance profiles C(x) during the reconstruction from left-sided reflection data (thin
line) for lossy material (assumption of constant G(x)≡4 mS/m during reconstruction) compared
to the true profile (bold line).
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Fig. 11. Capacitance profiles C(x) during the reconstruction from double-sided reflection data
(thin line) for lossy material compared to the true profile (bold line).
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Fig. 12. Conductance profiles G(x) during the reconstruction from double-sided reflection data
(thin line) for lossy material compared to the true profile (bold line).
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Fig. 13. Results of the cost function (above) and the total calculation time (below) after each
iteration step of the cg-method.
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